Prototype selection for the nearest neighbour rule through proximity graphs

نویسندگان

  • José Salvador Sánchez
  • Filiberto Pla
  • Francesc J. Ferri
چکیده

In this paper, the Gabriel and Relative Neighbourhood graphs are used to select a suitable subset of prototypes for the Nearest Neighbour rule. Experiments and results are reported showing the effectiveness of the method and comparing its performance to those obtained by classical techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle swarm optimization for prototype reduction

The problem addressed in this paper concerns the prototype reduction for a nearest-neighbor classifier. An efficient method based on particle swarm optimization is proposed here for finding a good set of prototypes. Starting from an initial random selection of a small number of training patterns, we generate a set of prototypes, using the particle swarm optimization, which minimizes the error r...

متن کامل

Fuzzy Nearest Prototype Classifier Applied to Speaker Identification

In a vector quantisation (VQ) based speaker identification system, a speaker model is created for each speaker from the training speech data by using the k-means clustering algorithm. For an unknown utterance analysed into a sequence of vectors, the nearest prototype classifier is used to identify speaker. To achieve the higher speaker identification accuracy, a fuzzy approach is proposed in th...

متن کامل

Parallel MCNN (pMCNN) with Application to Prototype Selection on Large and Streaming Data

The Modified Condensed Nearest Neighbour (MCNN) algorithm for prototype selection is order-independent, unlike the Condensed Nearest Neighbour (CNN) algorithm. Though MCNN gives better performance, the time requirement is much higher than for CNN. To mitigate this, we propose a distributed approach called Parallel MCNN (pMCNN) which cuts down the time drastically while maintaining good performa...

متن کامل

A Cooperative Game Theoretic Approach to Prototype Selection

In this paper we consider the task of prototype selection whose primary goal is to reduce the storage and computational requirements of the Nearest Neighbor classifier while achieving better classification accuracies. We propose a solution to the prototype selection problem using techniques from cooperative game theory and show its efficacy experimentally.

متن کامل

Data Characterization for Effective Prototype Selection

The Nearest Neighbor classifier is one of the most popular supervised classification methods. It is very simple, intuitive and accurate in a great variety of real-world applications. Despite its simplicity and effectiveness, practical use of this rule has been historically limited due to its high storage requirements and the computational costs involved, as well as the presence of outliers. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997